Folic Acid Conjugated δ-Valerolactone-Poly(ethylene glycol) Based Triblock Copolymer as a Promising Carrier for Targeted Doxorubicin Delivery

نویسندگان

  • Lekha Nair K
  • Sankar Jagadeeshan
  • Asha Nair S
  • G. S. Vinod Kumar
چکیده

The aim of this study is to test the hypothesis that the newly synthesized poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone) (VEV) copolymer grafted with folic acid would impart targetability and further enhance the anti-tumor efficacy of doxorubicin (DOX). Here, folic acid conjugated VEV (VEV-FOL) was synthesized by a modified esterification method and characterized using IR and NMR. DOX loaded VEV-FOL micelles were synthesized using a novel solvent evaporation method and were obtained with a mean diameter of 97 nm with high encapsulation efficiency and sustained in vitro release profile. Comparative studies of polymer micelles with and without folate for cellular uptake and cytotoxicity were done on folate receptor-positive breast cancer cell line, MDAMB231. The intracellular uptake tests showed significant increase in folate micellar uptake when compared to non-folate-mediated micelles. MTT assay followed by apoptosis assays clearly indicated that folate decorated micelles showed significantly better cytotoxicity (IC50 = 0.014 µM) and efficiency to induce apoptosis than other treated groups. Moreover, a significant G2/M arrest was induced by DOX loaded VEV-FOL micelles at a concentration where free drug failed to show any activity. Thus, our results show that the folic acid-labeled VEV copolymer is a promising biomaterial with controlled and sustainable tumor targeting ability for anticancer drugs which can open new frontiers in the area of targeted chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of triblock copolymeric micelles of δ- valerolactone and poly (ethylene glycol) as a competent vector for doxorubicin delivery against cancer

BACKGROUND Specific properties of amphiphilic copolymeric micelles like small size, stability, biodegradability and prolonged biodistribution have projected them as promising vectors for drug delivery. To evaluate the potential of δ-valerolactone based micelles as carriers for drug delivery, a novel triblock amphiphilic copolymer poly(δ-valerolactone)/poly(ethylene glycol)/poly(δ-valerolactone)...

متن کامل

Hydrolysable core crosslinked particle for receptor-mediated pH-sensitive anticancer drug delivery.

Biodegradable micelle systems with both extracellular stabilities and specific targeting properties are highly desirable for anti-cancer drug delivery. Here, we report a biodegradable and crosslinkable poly(propylene fumarate)-co-poly(lactide-co-glycolide)-co-poly(ethylene glycol) (PPF-PLGA-PEG) copolymer conjugated with folate (FA) molecules for receptor-mediated delivery of doxorubicin. Micel...

متن کامل

Galactosylated poly(ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization

Biodegradable galactosylated methoxy poly(ethylene glycol)/poly(l-lactide-co-β-malic acid) (Gal-PEG-b-PLMA) block copolymer micelles were successfully prepared by a solvent diffusion method, and could efficiently encapsulate doxorubicin. The Gal-PEG-b-PLMA micelles before and after doxorubicin loading were characterized by size, morphology, in vitro drug release, and in vitro cytotoxicity in He...

متن کامل

pH-Sensitive Micelles Based on Double-Hydrophilic Poly(methylacrylic acid)-Poly(ethylene glycol)-Poly(methylacrylic acid) Triblock Copolymer

pH-sensitive micelles with hydrophilic core and hydrophilic corona were fabricated by self-assembling of triblock copolymer of poly(methylacrylic acid)-poly(ethylene glycol)-poly(methylacrylic acid) at lower solution pH. Transmission electron microscopy and laser light scattering studies showed micelles were in nano-scale with narrow size distribution. Solution pH value and the micelles concent...

متن کامل

Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin

A folate conjugated ternary copolymer, FA-PEG-PEI-PCL, of poly(ethylene glycol) (PEG), poly(ethylene imine) (PEI), and poly(ɛ-caprolactone) (PCL) was synthesized. The copolymer self-assembled into cationic micelles capable of co-delivering siRNA and the anticancer drug doxorubicin (DOX). This dual functional nanocarrier demonstrated low cytotoxicity and high performance in drug/siRNA delivery. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013